
Cryptography



Four elements of a Crypto-system

 Only need to keep the “Key” secret, can afford to have the 
“algorithm” public 
 Again, can facilitate implementation by the mass

 It is easy to change the “Key”, but difficult to design and 
describe /communicate a new secure algorithm

 Kerckhoff’s Principle: The security of a cipher MUST NOT
depend on anything that cannot be easily changed



More Terminology
 Encryption: converting plaintext to ciphertext
 Decryption: converting ciphertext to plaintext
 Cryptanalysis: to break the code by analyzing the the 

algorithm/system 
 Brute-force attack: Enumerate over all the possible keys
 Types of attacks on Encrypted Messages by Cryptanalyst: 

 Ciphertext only: Given Ciphertext only to derive Plaintext/key
 Known Plaintext: Given <Plaintext,Ciphertext> pair(s) to derive 

the key, e.g. “From:” at the beginning of each email
 Chosen Plaintext: The attacker has the ability to inject chosen 

plaintext and observe the ciphertext outcome, e.g. send an 
email of chosen words to the victim while sniffing at the cipher

Increasing 
knowledge/level of 
control 
by the Cryptanalyst



The three laws of security:

 Absolutely secure systems do not exist

 To halve your vulnerability, you have to double your expenditure

 Cryptography is typically bypassed, not penetrated



Fundamental Tenet of Cryptography:
 If lots of smart people have failed to solve a problem (break the 

code), then it probably won’t be solved (broken) (soon).



Cryptographic Misconceptions
(from the S. of RSA)

 By Policy Makers: crypto is dangerous, but:
 weak crypto is not a solution
 controls can’t stop the inevitable

 By Researchers: A provably secure system is secure but:
 proven false by indirect attack
 can be based on false assumption
 requires careful choice of parameters

 By Implementers: Cryptography solves everything, but:
 only basic ideas are successfully deployed
 only simple attacks are avoided
 bad crypto can provide a false sense of security



To Publish or Not to Publish 
(your cryptography algorithm)

e.g. PKZip, those used by MS Office, 
Word-Perfect etc, RCx

 Security via Obscurity
 Disclose of design rationale may let 

others (your enemy) learn better 
cryptography design/ cryptanalysis 
techniques (Alternative is to publish 
the specification without explaining 
the rationale, e.g. DES design was 
published but rationale was never 
disclosed

 Smaller motivation to break ?
 Cryptanalysis must include 

recovering/reverse-engineering of 
the algorithm => the cryptosystem 
should be built to prevent reverse-
engineering

 Treated as Trade Secrets for 
commercial benefits (Vs. Patents), 
e.g. RCx

e.g. DES, AES, 
 Get free consulting/ scrutiny/ 

research from the large community 
of academic researchers

 Better security confidence if the 
scheme has been under more 
vigorous scrutiny. ( However, 
“publicly available” does not 
guarantee public scrutiny)

 Difficult to really keep the algorithm 
secret for long anyway, GSM, RC4, 
GemStar,Electronic Voting Systems 
in US.

 Allow international standardization
 Facilitate large-scale lower cost 

production of the corresponding 
hardware/software

 No need to include anti-reverse-
engineering protection



Source: Prof. Kris Gaj, George Mason University



Design Principles of Good Ciphers

 Confusion: to make the relation between the key and 
the ciphertext as complex as possible. 

 Diffusion: spreads the influence of a single plaintext bit 
over many ciphertext bits. 

 Avalanche Effect: a minor change to the plaintext or 
the key must result in significant and random-looking 
changes to the ciphertext. 



Basic Techniques in Conventional Ciphers

 Permutations (aka Transposition): rearrange bits, or 
bytes or characters in the plaintext

 Substitution: replace bits, or bytes, or characters, or 
block of characters with substitute value



Some Classical Ciphers



plain:  SEE ME AFTER THIS CLASS   

cipher: VHH PH DIWHU WKLV FODVV   

plain:  abcdefghijklmnopqrstuvwxyz   

key:    defghijklmnopqrstuvwxyzabc   

Caesar Cipher



Caesar Cipher can be easily broken via 
Frequency Analysis of alphabets

Letter Frequency in English Language



“Rail-Fence” Cipher

DISGRUNTLED EMPLOYEE

D   R   L   E   O   

I G U T E   M L Y E

S   N   D   P   E

DRLEOIGUTE MLYESNDPE



Cryptography

MESSAGE SPACE
(ALL POSSIBLE

PLAINTEXT MESSAGES)

•
•
•

•
•

“TRANSFER
$5000 TO MY
SAVINGS
ACCOUNT”

CODE SPACE
(ALL POSSIBLE

ENCRYPTED MESSAGES)

•

•

•
•
•
“1822UX S4HHG7 803TG
0J71D2 MK8A36 18PN1”

MUST BE REVERSIBLE
(BUT ONLY IF YOU

KNOW THE SECRET)



Cryptography
MESSAGE SPACE
(ALL POSSIBLE

PLAINTEXT MESSAGES)

•
•
•

•
•

“TRANSFER
$5000 TO MY
SAVINGS
ACCOUNT”

CODE SPACE
(ALL POSSIBLE

ENCRYPTED MESSAGES)

•

•

•
•
•
“1822UX S4HHG7 803TG
0J71D2 MK8A36 18PN1”

ENCRYPTION IS ONE-TO-ONE
AND REVERSIBLE

EVERY CODE CORRESPONDS
TO EXACTLY ONE MESSAGE

ENCRYPTION IS SECURE IF
ONLY AUTHORIZED PEOPLE
KNOW HOW TO REVERSE IT



Decryption:   Plain = (cipher – key) mod 26

XMCKLA EJKAWO FECIFE WSNZIP PXPKIY URMZHI JZTLBC YLGDYJ HTSVTV 
RRYYEG EXNCGA GGQVRF FHZCIB EWLGGR BZXQDQ DGGIAK YHJYEQ TDLCQT 
HZBSIZ IRZDYS RBYJFZ AIRCWI UCVXTW YKPQMK CKHVEX VXYVCS WOGAAZ 
OUVVON GCNEVR LMBLYB SBDCDC PCGVJX QXAUIP PXZQIJ JIUWYH COVWMJ 
UZOJHL DWHPER UBSRUJ HGAAPR CRWVHI FRNTQW AJVWRT ACAKRD OZKIIB 
VIQGBK IJCWHF GTTSSE EXFIPJ KICASQ IOUQTP ZSGXGH YTYCTI BAZSTN 

One-time Pad

H       E       L       L       O  plain
7 (H)   4 (E)  11 (L)  11 (L)  14 (O) plain

+ 23 (X)  12 (M)   2 (C)  10 (K)  11 (L) key
= 30      16      13      21      25     plain + key
=  4 (E)  16 (Q)  13 (N)  21 (V)  25 (Z)(plain + key) mod 26          

E       Q       N       V       Z  → cipher

Encryption:

 Achieve “Perfect Secrecy”: i.e. the Ciphertext alone does NOT 
tell you Any Information about the Plaintext
 Can’t be cracked even with Infinite Computational Power:   

EQVNZ -> LATER with another key = TQURI



Classification of Cryptosystems and 
Terminology

 Secret-Key
 Conventional
 Classical
 Symmetric
 Symmetric-key

 Public-Key
 Asymmetric



Symmetric (aka Secret-Key) 
Cryptosystems



A Secret-key Cryptosystem

 The Same key is used for encryption as well as decryption ; That’s why 
it is also also “symmetric key” system

 The encryption/decryption algorithm is sometimes referred as the 
“cipher”



Block Cipher Vs. Stream Cipher
 Process the message block by 

block of constant size, e.g. 64 bits
 Each block goes through multiple 

rounds of permutation and 
substitution

 Mixed operators, data or key 
dependent rotation/shifting 
=>permutation

 Key dependent substitution (S-
boxes) =>substitution

 More complex key scheduling: part 
of the key is used to generate the 
“per-round key” for each round

 Process the message bit by bit (as a 
stream) or byte-by-byte

 Typically have a (pseudo) random 
stream key

 combined (“Å” XOR ) with plaintext bit 
by bit 

 randomness of stream key completely 
destroys any statistically properties in 
the message 
 Ci = Mi Å Si
Ci = i-th bit of ciphertext

Mi = i-th bit of plaintext

Si = i-th bit of stream key

 what could be simpler, faster !!!! 
 but must never reuse stream key

 otherwise can remove effect 
and recover messages



General Example of a Block Cipher 



Stream Cipher



The Å“XOR” function is its own Inverse

Given: Ci = Mi Å Si ;
Ci Å Si = (Mi Å Si) Å Si = Mi Å (Si Å Si) = Mi Å 0 = Mi
because   
A Å A = 0 for all A and
A Å 0 = A for all A

A B AÅB

0 0 0

0 1 1

1 0 1

1 1 0

A A AÅA

0 0 0

1 1 0

A 0 AÅ0

0 0 0

1 0 1



Some design Considerations for Stream 
Cipher

 The “Secret Key” is used to generate the “seed” of a pseudo random 
number generator (PRNG) which output the random stream key

 The seed should be “large enough” to avoid exhaustive enumeration
 The PRNG should have 

 long period with no repetitions 
 statistically random 
 correlation immunity 

“The generation of random numbers is too important to be left to chance”  --
--- Robert Coveyou

“Random numbers should not be generated with a method chosen at 
random” ---- Donald Knuth



RC4 (Ron’s Code #4)
 a proprietary cipher (trade-secret) owned by RSA DSI 
 Leaked to the public in 1994 via an Internet posting
 Another Ron Rivest design, simple but effective
 Variable key size (1 to 256-byte long), byte-oriented stream cipher 
 Widely used in practice (Web SSL/TLS, Wireless LAN WEP) 
 Key forms random permutation of all 8-bit values 
 Uses that permutation to scramble input info processed a byte at a 

time 



RC4 Key Schedule 

 starts with an array S of numbers: 0..255 
 use key to well and truly shuffle 
 S forms internal state of the cipher 
 given a key k of length L bytes 

for i = 0 to 255 do

S[i] = i
j = 0

for i = 0 to 255 do 

j = (j + S[i] + k[i mod L]) (mod 256) 

swap (S[i], S[j])



RC4 Encryption

 encryption continues shuffling array values
 sum of shuffled pair selects "stream key" value
 XOR with next byte of message to en/decrypt

i = j = 0 

for each message byte Mi
i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)

swap(S[i], S[j])

t = (S[i] + S[j]) (mod 256) 

Ci = Mi XOR S[t]



RC4 Security

 claimed secure against known attacks
 have some analytical attacks, none practical 

 result is very non-linear 
 since RC4 is a stream cipher, must never reuse a key
 MUST Throw away the 1st few hundred bytes of the key-stream to 

avoid  the “weak-key” problem of RC4

 Have a concern with WEP in 802.11 Wireless LANs, but mostly due 
to key handling rather than RC4 itself 

 Latest:  Based on research presented in Usenix Security 2015 and 
more recent discoveries   (http://www.rc4nomore.com), one can 
decrypt web-cookies that are protected by TLS using RC4 within 52-
75 hours. As a result, by Oct 2017, major browsers have disabled 
RC4: < 1% of all HTTPS and TLS connections still use RC4.

http://www.rc4nomore.com


DES: The Data Encryption Standard
 Designed in the 1970’s by IBM with inputs from the NSA (National 

Security Agency) of US
 The most widely used encryption standard in the world
 Encrypt plaintext block-by-block with 64 bits per block ; this is so-

called a “block cipher”.
 Use 56-bit key (7-bit  * 8 ) ; for each 7-bit key-segment, a parity bit is 

added as  checksum to form an octet (which contains redundant 
info).   This results in a 64-bit word to be fed into the algorithm

 The same hardware can be used for both encryption and decryption
based on the elegant “Feistel” network structure

 Designed to facilitate hardware implementation WHILE making 
software implementation much slower

 In 1994, DES was reaffirmed by NIST for  US Federal Government 
use for another 5 years, i.e., due 1999. 

 In 1999, DES NIST issued  a new standard requiring “Triple DES” to 
be used instead.



Chronology of DES

transition



The Feistel Network



Overall Structure of the DES algorithm

Why 16 rounds ?



A DES Round

The Mangler Function takes a 32-bit input Rn, and a 48-bit per-
round key Kn  to yield an 32-bit output based on S-Box look-up 
followed by permutation

x
y

z

x y

z



The Å“XOR” function is its own Inverse

Given: z = xÅ y ;
z Å y = (xÅ y) Å y = xÅ (y Å y) = xÅ 0 = x
because   
A Å A = 0 for all A and
A Å 0 = A for all A

A B AÅB

0 0 0

0 1 1

1 0 1

1 1 0

A A AÅA

0 0 0

1 1 0

A 0 AÅ0

0 0 0

1 0 1



The “Magic” of the Feistel Structure

(1) The same hardware can be used
for both encryption and decryption
by simply swapping the left and right
halves of the input ; (no need to run
The algorithm backward)

(2) No need to construct the inverse of 
function f = the Mangler function in DES



Controversy behind DES
 56-bit key is too small to start with (it seems like the original design was 

for 64-bit key and was forced to shorten the key to 56-bit, so that … NSA 
can break it ??)

 Because of the involvement of NSA and because it is commonly 
believed that NSA will not recommend an algorithm which it cannot 
break, people were worried about the existent of “backdoor” within the 
algorithm, e.g. the S-boxes were all chosen by NSA and has shown to 
be not random and have special structure

 To make things worse, the rationale behind the design was never 
disclosed by the designers
 The designers knew a lot of advanced ways to attack encryption 

algorithms (cryptanalysis) and DES was designed to protect against 
all these known ways of attack ; explaining the design rationale 
would teach “the enemy” about those advanced cryptanalysis 
techniques. 

 Software Implementation of DES has poor performance
 The initial and final permutations do not add secure value, merely to 

slow down software implementation of the algorithm
 tried to limit the spread of the technology



How Secure is DES ?
 In practice, most commercial DES hardware solution is deliberately 

designed to have long key-loading time: it can encrypt/decrypt a large 
amount of data with a given key at top-speed but not suitable for key-search 
attack

 To show the inadequacy of a 56-bit key length, the Electronic Frontier 
Foundation (EFF) had designed “Deep Crack”, an ASIC-based specialized 
machine (1800 ASIC chips, 40MHz clock) in 1998
 Total Cost: US$220,000
 EFF also made the entire design documents publicly available:

 “Cracking DES: Secrets of Encryption Research, Wiretap 
Politics & Chip Design” by Electronic Frontier Foundation, 
John Gilmore (Ed), Publisher: O'Reilly & Associates; May 98

 With the design done, only need US$150,000 to replicate a machine (in 
1998)

 Average time of search: 4.5 days/key then
 Moorse’s Law: hardware price/performance improving 40% per year, 

keys must grow by about 1-bit every 2 years
 DES was designed in 1979, assuming 56-bit key was just sufficient, 

64-bit is about right in 1995 and 128 bits would suffice until 2123
 Conclusion: DES is now too easy to crack to be a useful encryption method

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Foundation,%20Electronic%20Frontier/102-7965070-8657700
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Gilmore,%20John/102-7965070-8657700


Minimum Key-length requirement
 Recommended by an NAS/NRC expert panel in 1996:

 What should be the corresponding Secure key lengths in 2018 ?



What should we do then ?
 Increase the effective key-length of DES by doing multiple DES with 

different keys => also mean slow down the encryption for multiple times
=>    Here comes the “Triple DES” or 3DES where C = EK3 [DK2 [EK1 [P ]]]

 The actual standard requires K3 to be equal to K1 => 112-bit key-length 
which is deemed to be sufficiently secure

 The use of E-E-E would still have worked. But using E-D-E instead of E-E-E 
enhance backward compatibility with DES by setting K1 equal to K2



 If  a 112-bit key is already deemed to be secure enough, why not just 
doing DES encryption twice with 2 different keys, i.e. C = EK2 [EK1 [P ]]?

 Because this is susceptible to a “Meet-in-the-Middle” attack which 
reduces the effective key-length to about 57-bit only.

Why not 2DES ?

E EP C

K1 K2



Meet-in-the-Middle Attack on 2DES
Assume the hacker has a few <plaintext,ciphertext> pairs, e.g.  <p1,c1>, 

<p2,c2>, <p3,c3> where ci = EK2 [EK1 [pi ]]
Key Observation: DK2 [c1] = EK1 [p1 ] if K1 and K2 are the right keys. 
Attack Steps:
 First make Table A with 256 entries, where each entry consists of a DES 

key K and the result r of applying that key to encrypt p1. Then sort the 
table in numerical order by r

 Make Table B with 256 entries, where each entry consists of a DES key 
K and the result r of applying that key to decrypt c1. Also sort Table B in 
numerical order by r

 Search through the sorted tables to find matching entries <KA,r> from 
Table A and <KB,r> from Table B. Each match provides KA as candidate 
K1 and KB as a candidate K2  because DKB [c1] = EKA [p1 ]

 If multiple candidate pairs of KA  and KB are found in Step 3, use each 
candidate key-pair to encrypt p2, p3, …etc to see if it results in c2, 
c3,…; The “real” key-pair will always work ; the other “coincident” key-
pairs will almost surely fail  on at least one of the other <pi,ci> pairs



Meet-in-the-Middle Attack on 2DES (cont’d)



Meet-in-the-Middle Attack on 2DES (cont’d)



NIST Contest for Advanced Encryption Standard 
(AES)

 NIST had an open call for proposals, actually a contest, in 1997
 21 submissions from all over the world ; 15 fulfilled all the requirement 

(8 from North America, 4 from Europe, 2 from Asia, 1 from Australia)
 Narrow down to five final candidates in August 1999:

 Rijndael (Belgium), Serpent (England, Israel, Norway), MARS 
(IBM) , Twofish (US), RC6 (US)

 After vigorous evaluation and testing, Rijndael [rain´ dow] was selected as 
the winner in 2000 and Standardized as AES effective May 2002

 By two Belgium cryptographers: Joan Daeman and Vincent Rijmen
 AES is expected to replace DES and 3DES as “The Standard” encryption 

work-horse world-wide



NIST AES Evaluation Criteria 

 Resistance to known attacks and randomness tests
 Complexity
 Efficient hardware and software implementation
 Flexibility, i.e. can be parameterized easily



 after testing and evaluation, shortlist in Aug-99: 
 MARS (IBM) - complex, fast, high security margin 
 RC6 (USA) - v. simple, v. fast, low security margin 
 Rijndael (Belgium) - clean, fast, good security margin 
 Serpent (Euro) - slow, clean, v. high security margin 
 Twofish (USA) - complex, v. fast, high security margin 

 saw contrast between algorithms with 
 few complex rounds verses many simple rounds 
 which refined existing ciphers verses new proposals

Comments on AES Finalists



Rijndael (AES)
 Symmetric block cipher (AES standard uses 128 bits per block, the 

Rijndael support multiple block sizes) that can be reconfigured to 
support key lengths of 128, 192, 256

 Number of Rounds depends on key length
 Unlike several other NIST AES contest finalists, Rijndael does not 

use the Feistel structure ; instead, it relies on some special 
properties in “Generalized Field” mathematics for computing the 
“inverse”, i.e. , decryption. 
 Unlike DES, the algorithm/hardware for Rijndael encryption and 

decryption process are not identical, but differ slightly.
 Software Implementation of Rijndael performs well across a wide 

range of platforms, from 8-bit (Smartcard like) to 64-bit CPU, e.g.
support 24+ Mbps encryption/decryption on a 200MHz Pentium Pro, 
Borland C++

 Fastest in Hardware amongst all the finalists ; ASIC Hardware 
implementation by NSA demonstrated performance ranging from 
443 to 606 Mbps, depending on key-length and mix of key 
scheduling



Overview of AES

4 transformations for Each 
Round:
 Substitute Bytes
 Shift Rows
 Mix Columns
 Add Round Key

 Number of rounds depends 
on key length (10,12,14 
rounds for 128,192,256-bit 
keys respectively



AES URLS

 http://csrc.nist.gov/CryptoToolkit/aes/rijndael/ - NIST AES

 http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ - Rijndael Home 
Page

 http://www.esat.kuleuven.ac.be/~rijmen/rijndael/Rijndael_Anim.zip
- Great Animation

http://csrc.nist.gov/CryptoToolkit/aes/rijndael/
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/Rijndael_Anim.zip


Chronology of some popular
Secret-Key Encryption Algorithms



Modes of Operation for Block Cipher
 Break the piece of plaintext into 64-bit blocks ; pad the last block to 64 bit
 Basic Mode of Operation: Use Electronic Code Book (ECB)

 Each block of plaintext is encrypted independently using the same key
 Repeated plaintext block will produce the same ciphertext block

=> can leak information
 Blockwise swapping of ciphertext may still produce meaningful output 

upon decryption
 Mainly used for sending a small number of blocks of information only



Information Leakage with ECB

Source: https://words.filippo.io/the-ecb-penguin/



Cipher Block Chaining (CBC) Mode
 Input to algorithm is the XOR of current plaintext block and 

preceding ciphertext block
 Repeating patterns are not exposed 
 But what if the ciphertext is corrupted or lost during transmission ?

IV stands for 
Initialization Vector ;

Sender and Receiver
Need to share the Key
and IV in advance ;

An encrypted IV can 
be
Sent in advance

If IV is sent in clear, 
Attacker can 
manipulate
P1 and compensate 
by 
modifying  the IV



Cipher Block Chaining (CBC) Mode (cont’d)
 The last encrypted block CN, aka the CBC residue, can be used as a 

“Message Authentication Code” (MAC) for a message as follows:
1. The sender transmits the original message in plaintext together with the 

the CBC residue (but NOT the key, of course)
2. The receiver, who knows the key in advance, can then encrypt the 

plaintext upon its arrival using CBC mode. If the message has been 
tampered with during transmission, the CBC residue won’t match !

 Notice in this case, CBC is used for MAC purpose and does NOT provide 
secrecy at all ; 

 If both secrecy and message-authenticity (tamper-proof) is required, we 
need to do CBC twice in 2 passes with 2 different keys: 
 1st pass for encryption, 
 2nd pass to generate the CBC-residue for MAC. 

 Why is it insufficient to just append the CBC residue of the 1st pass as the 
MAC ?



Insecurity of 
MAC-then-Encrypt mode of 

Cipher Block Chaining (CBC)
 Which one is better: MAC-then-Encrypt or Encrypt-then-MAC ?
 TLS Ver1.1 chose MAC-then-Encrypt (MtE), namely

1. Authenticate (protect the integrity of) the plaintext (using HMAC) ;
2. Add the HMAC code at the end of the message ; 
3. Pad the message length to the required block-length ;
4. Encrypt the resultant block using a block cipher, e.g. AES ;   

 Unfortunately, such implementations of MAC-then-Encrypt mode of 
CBC modes, in TLS-1.1, 1.2, are subject to various variants of 
Padding-Oracles+Timing attacks, 
 e.g.  Vaudenay Padding Oracle (2002), Lucky 13 (2013), BEAST 

(2011), etc, 
https://blog.cloudflare.com/padding-oracles-and-the-decline-of-cbc-mode-ciphersuites/

 CBC MtE modes have been depreciated (i.e. removed, 
disallowed) by new TLS standards (v1.3)

 https://www.cloudflare.com/learning-resources/tls-1-3/ 



Cipher FeedBack (CFB) Mode

Encrypt



Cipher Feedback Mode

 Convert DES into a stream cipher
 Eliminates need to pad a message
 Operates in real time
 Each character can be encrypted and transmitted 

immediately
 message is treated as a stream of bits 
 added to the output of the block cipher 
 result is feed back for next stage (hence name) 
 standard allows any number of bit (1,8 or 64 or whatever) to be 

feed back 
 denoted CFB-1, CFB-8, CFB-64 etc 

 is most efficient to use all 64 bits (CFB-64)
 uses: stream data encryption, message authentication



Advantages and Limitations of CFB

 appropriate when data arrives in bits/bytes 
 most common stream mode 
 limitation is need to stall while do block encryption after every s-

bits 
 note that the block cipher is used in encryption mode at both

ends 
 errors propagate for several blocks after the error 



Output FeedBack (OFB)

Encrypt



Output FeedBack (OFB)

 message is treated as a stream of bits 
 output of cipher is added to message 
 output is then feed back (hence name) 
 feedback is independent of message 
 can be computed in advance
 uses: stream encryption over noisy channels
 How about message authentication ?



Advantages and Limitations of OFB

 used when error feedback a problem or where need to  encryptions 
before message is available 

 superficially similar to CFB 
 but feedback is from the output of cipher and is independent of 

message 
 must never reuse the same sequence (key+IV)
 sender and receiver must remain in sync, and some recovery method is 

needed to ensure this occurs 
 originally specified with m-bit feedback in the standards 
 subsequent research has shown that only OFB-64 should ever be used



Counter (CTR)

 a “new” mode, though proposed early on
 similar to OFB but encrypts counter value rather than any 

feedback value
 must have a different key & counter value for every plaintext 

block (never reused)
 uses: high-speed network encryptions



Counter (CTR)



Advantages and Limitations of CTR

 efficiency
 can do parallel encryptions
 in advance of need
 good for bursty high speed links

 random access to encrypted data blocks
 provable security (good as other modes)
 but must ensure never reuse key/counter values, otherwise 

could break (cf OFB)



Birthday Attacks on 
CBC, CFB, OFB, CTR

 For a lot of modes of operations for Block Cipher, we must ensure 
not to reuse key/ counter values for different plaintexts,  otherwise 
information can be leaked ;  

=> CBC, CFB, OFB and CTR modes of operation for Block ciphers   
are subject to so-called Birthday Attacks: 
 To stay safe, re-keying is required before encrypting 2(block-size / 2) 

of input blocks, e.g. for DES, or 3DES, it means rekeying more 
frequent than 232� input blocks

Refer to the following for further details:
 Sweet32 paper in CCS 2016  https://sweet32.info/SWEET32_CCS16.pdf
 D. McGrew 2012 paper https://eprint.iacr.org/2012/623

https://sweet32.info/SWEET32_CCS16.pdf
https://eprint.iacr.org/2012/623


Key Distribution Problem for Secret Key 
Crypto-systems



Key Distribution

 Both parties must have the secret key
 Key is changed frequently
 Requires either manual delivery of keys, or a third-party 

encrypted channel
 Most effective method is a Key Distribution Center (e.g.

Kerberos)
 More later in the course…



Key Distribution



Location of Encryption Devices
 Link Encryption

 Each vulnerable communications link is equipped on both ends 
with an encryption device

 All traffic over all communications links is secured
 Vulnerable at each switch

 End-to-end Encryption
 The encryption process is carried out at the two end systems
 Encrypted data are transmitted unaltered across the network to 

the destination, which shares a key with the source  to decrypt 
the data

 Packet headers cannot be secured



Location of Encryption Devices


